HAR Inference: Recommendations for Practice

A-Tier
Journal: Journal of Business & Economic Statistics
Year: 2018
Volume: 36
Issue: 4
Pages: 541-559

Authors (4)

Score contribution per author:

1.005 = (α=2.01 / 4 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

The classic papers by Newey and West (1987) and Andrews (1991) spurred a large body of work on how to improve heteroscedasticity- and autocorrelation-robust (HAR) inference in time series regression. This literature finds that using a larger-than-usual truncation parameter to estimate the long-run variance, combined with Kiefer-Vogelsang (2002, 2005) fixed-b critical values, can substantially reduce size distortions, at only a modest cost in (size-adjusted) power. Empirical practice, however, has not kept up. This article therefore draws on the post-Newey West/Andrews literature to make concrete recommendations for HAR inference. We derive truncation parameter rules that choose a point on the size-power tradeoff to minimize a loss function. If Newey-West tests are used, we recommend the truncation parameter rule S = 1.3T1/2 and (nonstandard) fixed-b critical values. For tests of a single restriction, we find advantages to using the equal-weighted cosine (EWC) test, where the long run variance is estimated by projections onto Type II cosines, using ν = 0.4T2/3 cosine terms; for this test, fixed-b critical values are, conveniently, tν or F. We assess these rules using first an ARMA/GARCH Monte Carlo design, then a dynamic factor model design estimated using a 207 quarterly U.S. macroeconomic time series.

Technical Details

RePEc Handle
repec:taf:jnlbes:v:36:y:2018:i:4:p:541-559
Journal Field
Econometrics
Author Count
4
Added to Database
2026-01-25