Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
We provide a new estimator, MR-LATE, that consistently estimates local average treatment effects when treatment is missing for some observations, not at random. If instead treatment is mismeasured for some observations, then MR-LATE usually has less bias than the standard LATE estimator. We discuss potential applications where an endogenous binary treatment may be unobserved or mismeasured. We apply MR-LATE to study the impact of women’s control over household resources on health outcomes in Indian families. This application illustrates the use of MR-LATE when treatment is estimated rather than observed. In these situations, treatment mismeasurement may arise from model misspecification and estimation errors.