Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
We investigate the issue of the uniqueness of the cross-validation selected smoothing parameters in kernel estimation of multivariate nonparametric regression or conditional probability functions. When the covariates are all continuous variables, we provide a necessary and sufficient condition, and when the covariates are a mixture of categorical and continuous variables, we provide a simple sufficient condition that guarantees asymptotically the uniqueness of the cross-validation selected smoothing parameters.We thank a referee for the constructive comments.