A NONPARAMETRIC REGRESSION ESTIMATOR THAT ADAPTS TO ERROR DISTRIBUTION OF UNKNOWN FORM

B-Tier
Journal: Econometric Theory
Year: 2007
Volume: 23
Issue: 3
Pages: 371-413

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We propose a new kernel estimator for nonparametric regression with unknown error distribution. We show that the proposed estimator is adaptive in the sense that it is asymptotically equivalent to the infeasible local likelihood estimator (Staniswalis, 1989, Journal of the American Statistical Association 84, 276–283; Fan, Farmen, and Gijbels, 1998, Journal of the Royal Statistical Society, Series B 60, 591–608; and Fan and Chen, 1999, Journal of the Royal Statistical Society, Series B 61, 927–943), which requires knowledge of the error distribution. Hence, our estimator improves on standard nonparametric kernel estimators when the error distribution is not normal. A Monte Carlo experiment is conducted to investigate the finite-sample performance of our procedure.We thank Yuichi Kitamura, Yanqin Fan, Joel Horowitz, Roger Koenker, Jens Perch Nielsen, Peter Phillips, Peter Robinson, Tom Rothenberg, and two referees for helpful comments. Financial support from the NSF and the ESRC (UK) is gratefully acknowledged.

Technical Details

RePEc Handle
repec:cup:etheor:v:23:y:2007:i:03:p:371-413_07
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-25