Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
This paper investigates the ability of the adaptive learning approach to replicate the expectations of professional forecasters. For a range of macroeconomic and financial variables, we compare constant and decreasing gain learning models to simple, yet powerful benchmark models. We find that constant gain models provide a better fit for the expectations of professional forecasters. For macroeconomic series they usually perform significantly better than a naïve random walk forecast. In contrast, we find it difficult to beat the no-change benchmark using the adaptive learning models to forecast financial variables.