A new estimator of a jump discontinuity in regression

C-Tier
Journal: Economics Letters
Year: 2022
Volume: 218
Issue: C

Authors (3)

Martins-Filho, Carlos (University of Colorado) Xie, Sihong (not in RePEc) Yao, Feng (not in RePEc)

Score contribution per author:

0.335 = (α=2.01 / 3 authors) × 0.5x C-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We propose a new class of estimators for a jump discontinuity on nonparametric regression. While there is a vast literature in econometrics that addresses this issue (e.g., Hahn et al., 2001; Porter, 2003; Imbens and Lemieux, 2008; Cattaneo and Escanciano, 2017), the main approach in these studies is to use local polynomial (linear) estimators on both sides of the discontinuity to produce an estimator for the jump that has desirable boundary properties. Our approach extends the regression from both sides of the discontinuity using a theorem of Hestenes (1941). The extended regressions are then estimated and used to construct an estimator for the jump discontinuity that solves the boundary problems normally associated with classical Nadaraya–Watson estimators. We provide asymptotic characterizations for the jump estimators, including bias and variance orders, and asymptotic distributions after suitable centering and normalization. Monte Carlo simulations show that our jump estimators can outperform those based on local polynomial (linear) regression.

Technical Details

RePEc Handle
repec:eee:ecolet:v:218:y:2022:i:c:s0165176522002440
Journal Field
General
Author Count
3
Added to Database
2026-01-25