A smooth nonparametric conditional quantile frontier estimator

A-Tier
Journal: Journal of Econometrics
Year: 2008
Volume: 143
Issue: 2
Pages: 317-333

Authors (2)

Score contribution per author:

2.011 = (α=2.01 / 2 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

Traditional estimators for nonparametric frontier models (DEA, FDH) are very sensitive to extreme values/outliers. Recently, Aragon et al. [2005. Nonparametric frontier estimation: a conditional quantile-based approach. Econometric Theory 21, 358-389] proposed a nonparametric [alpha]-frontier model and estimator based on a suitably defined conditional quantile which is more robust to extreme values/outliers. Their estimator is based on a nonsmooth empirical conditional distribution. In this paper, we propose a new smooth nonparametric conditional quantile estimator for the [alpha]-frontier model. Our estimator is a kernel based conditional quantile estimator that builds on early work of Azzalini [1981. A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika 68, 326-328]. It is computationally simple, resistant to outliers and extreme values, and smooth. In addition, the estimator is shown to be consistent and asymptotically normal under mild regularity conditions. We also show that our estimator's variance is smaller than that of the estimator proposed by Aragon et al. A simulation study confirms the asymptotic theory predictions and contrasts our estimator with that of Aragon et al.

Technical Details

RePEc Handle
repec:eee:econom:v:143:y:2008:i:2:p:317-333
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-25