Learning in a complex world: Insights from an OLG lab experiment

B-Tier
Journal: Journal of Economic Behavior and Organization
Year: 2024
Volume: 220
Issue: C
Pages: 813-837

Score contribution per author:

0.503 = (α=2.01 / 4 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper brings novel insights into group coordination and price dynamics in complex environments. We implement an overlapping-generation model in the lab, where the output dynamics is given by the well-known chaotic quadratic map. This model structure allows us to study previously unexplored parameter regions where the perfect-foresight dynamics exhibits chaotic dynamics. This paper highlights three key findings. First, the price converges to the simplest equilibria, namely the monetary steady state or the two-cycle, in all markets. Second, we document a novel and intriguing finding: we observe a non-monotonicity of the behavior when complexity increases. Convergence to the two-cycle occurs for the intermediate parameter range, while both the extreme scenarios of a simple stable two-cycle and highly non-linear dynamics (with chaos) lead to coordination on the steady state in the lab. All indicators of coordination and convergence significantly exhibit this non-monotonic relationship in the learning-to-forecast experiments and this non-monotonicity persists in the learning-to-optimize design. Third, convergence in the learning-to-optimize experiment is more challenging to achieve: coordination on the two-cycle is never observed, although the two-cycle Pareto-dominates the steady state in our design.

Technical Details

RePEc Handle
repec:eee:jeborg:v:220:y:2024:i:c:p:813-837
Journal Field
Theory
Author Count
4
Added to Database
2026-01-26