On the constancy of bribe-proof solutions

B-Tier
Journal: Economic Theory
Year: 2003
Volume: 22
Issue: 1
Pages: 211-217

Score contribution per author:

2.011 = (α=2.01 / 1 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We consider the problem of choosing one point in a set of alternatives when monetary transfers are possible. In this context, Schummer (2000) shows that a social choice function must be a constant function if manipulation through bribes is ruled out. But he requires two kinds of domain-richness conditions. One is either smooth connectedness or the finiteness of the set of alternatives and the other is monotonical closedness. However, dispensing with the former condition, we alternatively prove the same result under a weaker condition than monotonical closedness. Copyright Springer-Verlag Berlin Heidelberg 2003

Technical Details

RePEc Handle
repec:spr:joecth:v:22:y:2003:i:1:p:211-217
Journal Field
Theory
Author Count
1
Added to Database
2026-01-26