Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
The increasing importance of solar power for electricity generation leads to increasing demand for probabilistic forecasting of local and aggregated photovoltaic (PV) yields. Based on publicly available irradiation data, this paper uses an indirect modeling approach for hourly medium to long-term local PV yields. We suggest a time series model for global horizontal irradiation that allows for multivariate probabilistic forecasts for arbitrary time horizons. It features several important stylized facts. Sharp time-dependent lower and upper bounds of global horizontal irradiations are estimated. The parameters of the beta distributed marginals of the transformed data are allowed to be time-dependent. A copula-based time series model is introduced for the hourly and daily dependence structure based on simple vine copulas with so-called tail dependence. Evaluation methods based on scoring rules are used to compare the model’s power for multivariate probabilistic forecasting with other models used in the literature showing that our model outperforms other models in many respects.