A Quadratic Kalman Filter

A-Tier
Journal: Journal of Econometrics
Year: 2015
Volume: 187
Issue: 1
Pages: 43-56

Score contribution per author:

1.341 = (α=2.01 / 3 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We propose a new filtering and smoothing technique for non-linear state-space models. Observed variables are quadratic functions of latent factors following a Gaussian VAR. Stacking the vector of factors with its vectorized outer-product, we form an augmented state vector whose first two conditional moments are known in closed-form. We also provide analytical formulae for the unconditional moments of this augmented vector. Our new Quadratic Kalman Filter (Qkf) exploits these properties to formulate fast and simple filtering and smoothing algorithms. A simulation study first emphasizes that the Qkf outperforms the extended and unscented approaches in the filtering exercise showing up to 70% RMSEs improvement of filtered values. Second, it provides evidence that Qkf-based maximum-likelihood estimates of model parameters always possess lower bias or lower RMSEs than the alternative estimators.

Technical Details

RePEc Handle
repec:eee:econom:v:187:y:2015:i:1:p:43-56
Journal Field
Econometrics
Author Count
3
Added to Database
2026-01-26