Identification and Estimation in Non-Fundamental Structural VARMA Models

S-Tier
Journal: Review of Economic Studies
Year: 2020
Volume: 87
Issue: 4
Pages: 1915-1953

Score contribution per author:

2.681 = (α=2.01 / 3 authors) × 4.0x S-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

The basic assumption of a structural vector autoregressive moving average (SVARMA) model is that it is driven by a white noise whose components are uncorrelated or independent and can be interpreted as economic shocks, called “structural” shocks. When the errors are Gaussian, independence is equivalent to non-correlation and these models face two identification issues. The first identification problem is “static” and is due to the fact that there is an infinite number of linear transformations of a given random vector making its components uncorrelated. The second identification problem is “dynamic” and is a consequence of the fact that, even if a SVARMA admits a non-invertible moving average (MA) matrix polynomial, it may feature the same second-order dynamic properties as a VARMA process in which the MA matrix polynomials are invertible (the fundamental representation). The aim of this article is to explain that these difficulties are mainly due to the Gaussian assumption, and that both identification challenges are solved in a non-Gaussian framework if the structural shocks are assumed to be instantaneously and serially independent. We develop new parametric and semi-parametric estimation methods that accommodate non-fundamentalness in the MA dynamics. The functioning and performances of these methods are illustrated by applications conducted on both simulated and real data.

Technical Details

RePEc Handle
repec:oup:restud:v:87:y:2020:i:4:p:1915-1953.
Journal Field
General
Author Count
3
Added to Database
2026-01-26