Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
In this note we show that the uniqueness of the subgame perfect equilibrium of Rubinstein's (1982) bargaining theory does not hold if the number of feasible agreements is finite. It will be shown that any Pareto-efficient agreement (belonging to the finite set of feasible agreements) can be supported as a subgame perfect equilibrium of the Rubinstein alternating-offers bargaining game, provided the length of a single bargaining period is sufficiently small.