On the structure and estimation of hierarchical Archimedean copulas

A-Tier
Journal: Journal of Econometrics
Year: 2013
Volume: 173
Issue: 2
Pages: 189-204

Authors (3)

Okhrin, Ostap (Technische Universität Dresden) Okhrin, Yarema (not in RePEc) Schmid, Wolfgang (not in RePEc)

Score contribution per author:

1.341 = (α=2.01 / 3 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

In this paper we provide a method for estimating multivariate distributions defined through hierarchical Archimedean copulas. In general, the true structure of the hierarchy is unknown, but we develop a computationally efficient technique to determine it from the data. For this purpose we introduce a hierarchical estimation procedure for the parameters and provide an asymptotic analysis. We consider both parametric and nonparametric estimation of the marginal distributions. A simulation study and an empirical application show the effectiveness of the grouping procedure in the sense of structure selection.

Technical Details

RePEc Handle
repec:eee:econom:v:173:y:2013:i:2:p:189-204
Journal Field
Econometrics
Author Count
3
Added to Database
2026-01-26