Volatility spillovers in commodity markets: A large t-vector autoregressive approach

A-Tier
Journal: Energy Economics
Year: 2020
Volume: 85
Issue: C

Score contribution per author:

1.341 = (α=2.01 / 3 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

Prices of commodities have shown large fluctuations. A high volatility of one commodity today may impact the volatility of another commodity tomorrow. As such, agricultural and energy commodities are closely dependent due to the expansion of the biofuel industry. We study volatility spillovers among a large number of energy, agriculture and biofuel commodities using the vector auto regressive (VAR) model. To account for the possible fat-tailed distribution of the model errors, we propose the t-lasso method for obtaining a large VAR. The t-lasso is shown to have excellent properties, and a forecast analysis shows that the t-lasso attains better forecast accuracy than standard estimators. Our empirical analysis shows the existence of volatility spillovers between energy and biofuel, and between energy and agricultural commodities.

Technical Details

RePEc Handle
repec:eee:eneeco:v:85:y:2020:i:c:s0140988319303500
Journal Field
Energy
Author Count
3
Added to Database
2026-01-24