Strategic Sample Selection

S-Tier
Journal: Econometrica
Year: 2021
Volume: 89
Issue: 2
Pages: 911-953

Score contribution per author:

2.681 = (α=2.01 / 3 authors) × 4.0x S-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

Are the highest sample realizations selected from a larger presample more or less informative than the same amount of random data? Developing multivariate accuracy for interval dominance ordered preferences, we show that sample selection always benefits (or always harms) a decision maker if the reverse hazard rate of the data distribution is log‐supermodular (or log‐submodular), as in location experiments with normal noise. We find nonpathological conditions under which the information contained in the winning bids of a symmetric auction decreases in the number of bidders. Exploiting extreme value theory, we quantify the limit amount of information revealed when the presample size (number of bidders) goes to infinity. In a model of equilibrium persuasion with costly information, we derive implications for the optimal design of selected experiments when selection is made by an examinee, a biased researcher, or contending sides with the peremptory challenge right to eliminate a number of jurors.

Technical Details

RePEc Handle
repec:wly:emetrp:v:89:y:2021:i:2:p:911-953
Journal Field
General
Author Count
3
Added to Database
2026-01-26