Regional heterogeneity and U.S. presidential elections: Real-time 2020 forecasts and evaluation

B-Tier
Journal: International Journal of Forecasting
Year: 2022
Volume: 38
Issue: 2
Pages: 662-687

Authors (2)

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper exploits cross-sectional variation at the level of U.S. counties to generate real-time forecasts for the 2020 U.S. presidential election. The forecasting models are trained on data covering the period 2000–2016, using high-dimensional variable selection techniques. Our county-based approach contrasts the literature that focuses on national and state level data but uses longer time periods to train their models. The paper reports forecasts of popular and electoral college vote outcomes and provides a detailed ex-post evaluation of the forecasts released in real time before the election. It is shown that all of these forecasts outperform autoregressive benchmarks. A pooled national model using One-Covariate-at-a-time-Multiple-Testing (OCMT) variable selection significantly outperformed all models in forecasting the U.S. mainland national vote share and electoral college outcomes (forecasting 236 electoral votes for the Republican party compared to 232 realized). This paper also shows that key determinants of voting outcomes at the county level include incumbency effects, unemployment, poverty, educational attainment, house price changes, and international competitiveness. The results are also supportive of myopic voting: economic fluctuations realized a few months before the election tend to be more powerful predictors of voting outcomes than their long-horizon analogs.

Technical Details

RePEc Handle
repec:eee:intfor:v:38:y:2022:i:2:p:662-687
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-29