Modeling tail risks of inflation using unobserved component quantile regressions

B-Tier
Journal: Journal of Economic Dynamics and Control
Year: 2022
Volume: 143
Issue: C

Score contribution per author:

2.011 = (α=2.01 / 1 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper proposes methods for Bayesian inference in time-varying parameter (TVP) quantile regressions (QRs) featuring conditional heteroskedasticity. I use data augmentation schemes to render the model conditionally Gaussian and develop an efficient sampling algorithm. Regularization of the high-dimensional parameter space is achieved via dynamic shrinkage priors. The merits of the proposed approach are illustrated in a simulation study, and a simple version of TVP-QR based on an unobserved components model is applied to dynamically trace the quantiles of inflation in the United States, the United Kingdom and the euro area. In an out-of-sample forecast exercise, I find the proposed model to be competitive and perform particularly well for higher-order and tail forecasts. A detailed analysis of the resulting predictive distributions reveals that they are sometimes skewed and occasionally feature heavy tails.

Technical Details

RePEc Handle
repec:eee:dyncon:v:143:y:2022:i:c:s016518892200197x
Journal Field
Macro
Author Count
1
Added to Database
2026-01-29