Robust inference on correlation under general heterogeneity

A-Tier
Journal: Journal of Econometrics
Year: 2024
Volume: 240
Issue: 1

Authors (3)

Giraitis, Liudas (not in RePEc) Li, Yufei (not in RePEc) Phillips, Peter C.B. (Singapore Management Universit...)

Score contribution per author:

1.341 = (α=2.01 / 3 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

Considerable evidence in past research shows size distortion in standard tests for zero autocorrelation or zero cross-correlation when time series are not independent identically distributed random variables, pointing to the need for more robust procedures. Recent tests for serial correlation and cross-correlation in Dalla, Giraitis, and Phillips (2022) provide a more robust approach, allowing for heteroskedasticity and dependence in uncorrelated data under restrictions that require a smooth, slowly-evolving deterministic heteroskedasticity process. The present work removes those restrictions and validates the robust testing methodology for a wider class of innovations and regression residuals allowing for heteroscedastic uncorrelated and non-stationary data settings. The updated analysis given here enables more extensive use of the methodology in practical applications. Monte Carlo experiments confirm excellent finite sample performance of the robust test procedures even for extremely complex white noise processes. The empirical examples show that use of robust testing methods can materially reduce spurious evidence of correlations found by standard testing procedures.

Technical Details

RePEc Handle
repec:eee:econom:v:240:y:2024:i:1:s030440762400037x
Journal Field
Econometrics
Author Count
3
Added to Database
2026-01-29