SHRINKAGE ESTIMATION OF REGRESSION MODELS WITH MULTIPLE STRUCTURAL CHANGES

B-Tier
Journal: Econometric Theory
Year: 2016
Volume: 32
Issue: 6
Pages: 1376-1433

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

In this paper, we consider the problem of determining the number of structural changes in multiple linear regression models via group fused Lasso. We show that with probability tending to one, our method can correctly determine the unknown number of breaks, and the estimated break dates are sufficiently close to the true break dates. We obtain estimates of the regression coefficients via post Lasso and establish the asymptotic distributions of the estimates of both break ratios and regression coefficients. We also propose and validate a data-driven method to determine the tuning parameter. Monte Carlo simulations demonstrate that the proposed method works well in finite samples. We illustrate the use of our method with a predictive regression of the equity premium on fundamental information.

Technical Details

RePEc Handle
repec:cup:etheor:v:32:y:2016:i:06:p:1376-1433_00
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-29