Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
We model and solve best choice problems in the multiple prior framework: An ambiguity averse decision maker aims to choose the best among a fixed number of applicants that appear sequentially in a random order. The agent faces ambiguity about the probability that a candidate—a relatively top applicant—is actually best among all applicants. We show that our model covers the classical secretary problem, but also other interesting classes of problems. We provide a closed form solution of the problem for time-consistent priors using backward induction. As in the classical case, the derived stopping strategy is simple. Ambiguity can lead to substantial differences to the classical threshold rule. Copyright Springer-Verlag 2013