Scale-dependency in discrete choice models: A fishery application

A-Tier
Journal: Journal of Environmental Economics and Management
Year: 2021
Volume: 105
Issue: C

Authors (6)

Dépalle, Maxime (not in RePEc) Sanchirico, James N. (University of California-Davis) Thébaud, Olivier (not in RePEc) O’Farrell, Shay (not in RePEc) Haynie, Alan C. (not in RePEc) Perruso, Larry (not in RePEc)

Score contribution per author:

0.670 = (α=2.01 / 6 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

Modeling the spatial behavior of fishers is critical in assessing fishery management policies and has been dominated by discrete choice models (DCM). Motivated by the widespread availability of micro-data on fishing vessel locations, this paper examines the complexity associated with the choice of the spatial scale in a DCM of fishing locations. Our empirical approach estimates the standard DCM at varying spatial resolutions using both simulated data and vessel monitoring system data from the Gulf of Mexico longline fishery. We assess model performance using goodness-of-fit, predictive capacity, parameter estimates, and the assessment of the fishery response to a hypothetical marine protected area. Results show that, even when the specification of the decision-making process is correct, models can be structurally biased because of the aggregation of spatial scale that neglects the value of many fishing locations. The extent of such biases can only be detected by considering various spatial aggregation levels.

Technical Details

RePEc Handle
repec:eee:jeeman:v:105:y:2021:i:c:s009506962030111x
Journal Field
Environment
Author Count
6
Added to Database
2026-01-29