Machine learning and structural econometrics: contrasts and synergies

B-Tier
Journal: The Econometrics Journal
Year: 2020
Volume: 23
Issue: 3
Pages: S81-S124

Score contribution per author:

0.670 = (α=2.01 / 3 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

SummaryWe contrast machine learning (ML) and structural econometrics (SE), focusing on areas where ML can advance the goals of SE. Our views have been informed and inspired by the contributions to this special issue and by papers presented at the second conference on dynamic structural econometrics at the University of Copenhagen in 2018, ‘Methodology and Applications of Structural Dynamic Models and Machine Learning'. ML offers a promising class of techniques that can significantly extend the set of questions we can analyse in SE. The scope, relevance and impact of empirical work in SE can be improved by following the lead of ML in questioning and relaxing the assumption of unbounded rationality. For the foreseeable future, however, ML is unlikely to replace the essential role of human creativity and knowledge in model building and inference, particularly with respect to the key goal of SE, counterfactual prediction.

Technical Details

RePEc Handle
repec:oup:emjrnl:v:23:y:2020:i:3:p:s81-s124.
Journal Field
Econometrics
Author Count
3
Added to Database
2026-01-29