Simple Adaptive Size-Exact Testing for Full-Vector and Subvector Inference in Moment Inequality Models

S-Tier
Journal: Review of Economic Studies
Year: 2023
Volume: 90
Issue: 1
Pages: 201-228

Authors (2)

Score contribution per author:

4.022 = (α=2.01 / 2 authors) × 4.0x S-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We propose a simple test for moment inequalities that has exact size in normal models with known variance and has uniformly asymptotically exact size under asymptotic normality. The test compares the quasi-likelihood ratio statistic to a chi-squared critical value, where the degree of freedom is the rank of the inequalities that are active in finite samples. The test requires no simulation and thus is computationally fast and especially suitable for constructing confidence sets for parameters by test inversion. It uses no tuning parameter for moment selection and yet still adapts to the slackness of the moment inequalities. Furthermore, we show how the test can be easily adapted to inference on subvectors in the common empirical setting of conditional moment inequalities with nuisance parameters entering linearly. User-friendly Matlab code to implement the test is provided.

Technical Details

RePEc Handle
repec:oup:restud:v:90:y:2023:i:1:p:201-228.
Journal Field
General
Author Count
2
Added to Database
2026-01-29