Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
We propose two ways to improve the forecasting accuracy of a focused time-delay neural network (FTDNN) that forecasts the term structure of crude oil futures. Our results show that a convergence based FTDNN makes consistently more accurate predictions than the fixed-epoch FTDNN in Barunik and Malinska (2016). Further, we suggest using basis splines (B-splines), instead of Nelson-Siegel functions, to fit the term structure curves. The empirical results show that the B-spline expansions lead to consistently better 1 and 3 months ahead predictions compared to the convergence based FTDNN. We also explore conditions under which the B-spline based approach may be better for longer-term predictions.