Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
We report results from an experiment in which humans repeatedly play one of two games against a computer program that follows either a reinforcement or an experience weighted attraction learning algorithm. Our experiment shows these learning algorithms detect exploitable opportunities more sensitively than humans. Also, learning algorithms respond to detected payoff-increasing opportunities systematically; however, the responses are too weak to improve the algorithms' payoffs. Human play against various decision maker types does not vary significantly. These factors lead to a strong linear relationship between the humans' and algorithms' action choice proportions that is suggestive of the algorithms' best response correspondences.