Testing Hypotheses in Nonparametric Models of Production

A-Tier
Journal: Journal of Business & Economic Statistics
Year: 2016
Volume: 34
Issue: 3
Pages: 435-456

Score contribution per author:

1.341 = (α=2.01 / 3 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

Data envelopment analysis (DEA) and free disposal hull (FDH) estimators are widely used to estimate efficiency of production. Practitioners use DEA estimators far more frequently than FDH estimators, implicitly assuming that production sets are convex. Moreover, use of the constant returns to scale (CRS) version of the DEA estimator requires an assumption of CRS. Although bootstrap methods have been developed for making inference about the efficiencies of individual units, until now no methods exist for making consistent inference about differences in mean efficiency across groups of producers or for testing hypotheses about model structure such as returns to scale or convexity of the production set. We use central limit theorem results from our previous work to develop additional theoretical results permitting consistent tests of model structure and provide Monte Carlo evidence on the performance of the tests in terms of size and power. In addition, the variable returns to scale version of the DEA estimator is proved to attain the faster convergence rate of the CRS-DEA estimator under CRS. Using a sample of U.S. commercial banks, we test and reject convexity of the production set, calling into question results from numerous banking studies that have imposed convexity assumptions. Supplementary materials for this article are available online.

Technical Details

RePEc Handle
repec:taf:jnlbes:v:34:y:2016:i:3:p:435-456
Journal Field
Econometrics
Author Count
3
Added to Database
2026-01-29