Inversion copulas from nonlinear state space models with an application to inflation forecasting

B-Tier
Journal: International Journal of Forecasting
Year: 2018
Volume: 34
Issue: 3
Pages: 389-407

Authors (2)

Smith, Michael Stanley (University of Melbourne) Maneesoonthorn, Worapree (not in RePEc)

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We propose the construction of copulas through the inversion of nonlinear state space models. These copulas allow for new time series models that have the same serial dependence structure as a state space model, but with an arbitrary marginal distribution, and flexible density forecasts. We examine the time series properties of the copulas, outline serial dependence measures, and estimate the models using likelihood-based methods. Copulas constructed from three example state space models are considered: a stochastic volatility model with an unobserved component, a Markov switching autoregression, and a Gaussian linear unobserved component model. We show that all three inversion copulas with flexible margins improve the fit and density forecasts of quarterly U.S. broad inflation and electricity inflation.

Technical Details

RePEc Handle
repec:eee:intfor:v:34:y:2018:i:3:p:389-407
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-29