The proportional Shapley value and applications

B-Tier
Journal: Games and Economic Behavior
Year: 2018
Volume: 108
Issue: C
Pages: 93-112

Score contribution per author:

0.503 = (α=2.01 / 4 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We study a non linear weighted Shapley value (Shapley, 1953b) for cooperative games with transferable utility, in which the weights are endogenously given by the players' stand-alone worths. We call it the proportional Shapley value since it distributes the Harsanyi dividend (Harsanyi, 1959) of all coalitions in proportion to the stand-alone worths of its members. We show that this value recommends appealing payoff distributions in several applications among which a land production economy introduced in Shapley and Shubik (1967). Although the proportional Shapley value does not satisfy the classical axioms of linearity and consistency (Hart and Mas-Colell, 1989), the main results provide comparable axiomatic characterizations of our value and the Shapley value by means of weak versions of these two axioms. These characterizations rely on another result, which states that there exists a unique extension of a value defined on games that are additive except, possibly, for the grand coalition to the set of all games in the much larger class we consider. Moreover, our value inherits several well-known properties of the weighted Shapley values.

Technical Details

RePEc Handle
repec:eee:gamebe:v:108:y:2018:i:c:p:93-112
Journal Field
Theory
Author Count
4
Added to Database
2026-01-24