STRUCTURAL THRESHOLD REGRESSION

B-Tier
Journal: Econometric Theory
Year: 2016
Volume: 32
Issue: 4
Pages: 827-860

Score contribution per author:

0.670 = (α=2.01 / 3 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper introduces the structural threshold regression (STR) model that allows for an endogenous threshold variable as well as for endogenous regressors. This model provides a parsimonious way of modeling nonlinearities and has many potential applications in economics and finance. Our framework can be viewed as a generalization of the simple threshold regression framework of Hansen (2000, Econometrica 68, 575–603) and Caner and Hansen (2004, Econometric Theory 20, 813–843) to allow for the endogeneity of the threshold variable and regime-specific heteroskedasticity. Our estimation of the threshold parameter is based on a two-stage concentrated least squares method that involves an inverse Mills ratio bias correction term in each regime. We derive its asymptotic distribution and propose a method to construct confidence intervals. We also provide inference for the slope parameters based on a generalized method of moments. Finally, we investigate the performance of the asymptotic approximations using a Monte Carlo simulation, which shows the applicability of the method in finite samples.

Technical Details

RePEc Handle
repec:cup:etheor:v:32:y:2016:i:04:p:827-860_00
Journal Field
Econometrics
Author Count
3
Added to Database
2026-01-29