Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
We often want to predict human behavior. It is well-known that the model that fits in-sample data best is not necessarily the model that forecasts (i.e. predicts out-of-sample) best, but we lack guidance on how to select a model for the purpose of forecasting. We illustrate the general issues and methods with the case of Rank-Dependent Expected Utility versus Expected Utility, using laboratory data and simulations. We find that poor forecasting performance is a likely outcome for typical laboratory sample sizes due to over-fitting. Finally we derive a decision-theory-based rule for selecting the best model for forecasting depending on the sample size.