Extending the Nash solution to choice problems with reference points

B-Tier
Journal: Games and Economic Behavior
Year: 2013
Volume: 80
Issue: C
Pages: 219-228

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

In 1985 Aumann axiomatized the Shapley NTU value by non-emptiness, efficiency, unanimity, scale covariance, conditional additivity, and independence of irrelevant alternatives. We show that, when replacing unanimity by “unanimity for the grand coalition” and translation covariance, these axioms characterize the Nash solution on the class of n-person choice problems with reference points. A classical bargaining problem consists of a convex feasible set that contains the disagreement point here called reference point. The feasible set of a choice problem does not necessarily contain the reference point and may not be convex. However, we assume that it satisfies some standard properties. Our result is robust so that the characterization is still valid for many subclasses of choice problems, among those is the class of classical bargaining problems. Moreover, we show that each of the employed axioms – including independence of irrelevant alternatives – may be logically independent of the remaining axioms.

Technical Details

RePEc Handle
repec:eee:gamebe:v:80:y:2013:i:c:p:219-228
Journal Field
Theory
Author Count
2
Added to Database
2026-01-29