Let’s fix it: Fixed-b asymptotics versus small-b asymptotics in heteroskedasticity and autocorrelation robust inference

A-Tier
Journal: Journal of Econometrics
Year: 2014
Volume: 178
Issue: P3
Pages: 659-677

Score contribution per author:

4.022 = (α=2.01 / 1 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

In the presence of heteroscedasticity and autocorrelation of unknown forms, the covariance matrix of the parameter estimator is often estimated using a nonparametric kernel method that involves a lag truncation parameter. Depending on whether this lag truncation parameter is specified to grow at a slower rate than or the same rate as the sample size, we obtain two types of asymptotic approximations: the small-b asymptotics and the fixed-b asymptotics. Using techniques for probability distribution approximation and high order expansions, this paper shows that the fixed-b asymptotic approximation provides a higher order refinement to the first order small-b asymptotics. This result provides a theoretical justification on the use of the fixed-b asymptotics in empirical applications. On the basis of the fixed-b asymptotics and higher order small-b asymptotics, the paper introduces a new and easy-to-use asymptotic F test that employs a finite sample corrected Wald statistic and uses an F-distribution as the reference distribution. Finally, the paper develops a bandwidth selection rule that is testing-optimal in that the bandwidth minimizes the type II error of the asymptotic F test while controlling for its type I error. Monte Carlo simulations show that the asymptotic F test with the testing-optimal bandwidth works very well in finite samples.

Technical Details

RePEc Handle
repec:eee:econom:v:178:y:2014:i:p3:p:659-677
Journal Field
Econometrics
Author Count
1
Added to Database
2026-01-29