Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy

B-Tier
Journal: International Journal of Forecasting
Year: 2020
Volume: 36
Issue: 2
Pages: 373-398

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper constructs hybrid forecasts that combine forecasts from vector autoregressive (VAR) model(s) with both short- and long-term expectations from surveys. Specifically, we use the relative entropy to tilt one-step-ahead and long-horizon VAR forecasts to match the nowcasts and long-horizon forecasts from the Survey of Professional Forecasters. We consider a variety of VAR models, ranging from simple fixed-parameter to time-varying parameters. The results across models indicate meaningful gains in multi-horizon forecast accuracy relative to model forecasts that do not incorporate long-term survey conditions. Accuracy improvements are achieved for a range of variables, including those that are not tilted directly but are affected through spillover effects from tilted variables. The accuracy gains for hybrid inflation forecasts from simple VARs are substantial, statistically significant, and competitive to time-varying VARs, univariate benchmarks, and survey forecasts. We view our proposal as an indirect approach to accommodating structural change and moving end points.

Technical Details

RePEc Handle
repec:eee:intfor:v:36:y:2020:i:2:p:373-398
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-29