Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
This paper provides necessary and sufficient conditions for the existence of pure strategy Nash equilibria by replacing the assumptions concerning continuity and quasiconcavity with a unique condition, passing strategy space from topological vector spaces to arbitrary topological spaces. Preferences may also be nontotal/nontransitive, discontinuous, nonconvex, or nonmonotonic. We define a single condition, recursive diagonal transfer continuity (RDTC) for aggregator payoff function and recursive weak transfer quasi-continuity (RWTQC) for individuals’ preferences, respectively, which establishes the existence of pure strategy Nash equilibria in games with arbitrary (topological) strategy spaces and preferences without imposing any kind of quasiconcavity-related conditions.