Estimating and Forecasting with a Dynamic Spatial Panel Data Model

B-Tier
Journal: Oxford Bulletin of Economics and Statistics
Year: 2014
Volume: 76
Issue: 1
Pages: 112-138

Score contribution per author:

0.670 = (α=2.01 / 3 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

type="main" xml:lang="en"> <title type="main">Abstract</title> <p>This study focuses on the estimation and predictive performance of several estimators for the dynamic and autoregressive spatial lag panel data model with spatially correlated disturbances. In the spirit of Arellano and Bond (1991) and Mutl (2006), a dynamic spatial generalized method of moments (GMM) estimator is proposed based on Kapoor, Kelejian and Prucha (2007) for the spatial autoregressive (SAR) error model. The main idea is to mix non-spatial and spatial instruments to obtain consistent estimates of the parameters. Then, a linear predictor of this spatial dynamic model is derived. Using Monte Carlo simulations, we compare the performance of the GMM spatial estimator to that of spatial and non-spatial estimators and illustrate our approach with an application to new economic geography.

Technical Details

RePEc Handle
repec:bla:obuest:v:76:y:2014:i:1:p:112-138
Journal Field
General
Author Count
3
Added to Database
2026-01-24