Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
The linear opinion pool (LOP) produces potentially non-Gaussian combination forecast densities. In this paper, we propose a computationally convenient transformation for the LOP to mirror the non-Gaussianity exhibited by the target variable. Our methodology involves a Smirnov transform to reshape the LOP combination forecasts using the empirical cumulative distribution function. We illustrate our empirically transformed opinion pool (EtLOP) approach with an application examining quarterly real-time forecasts for U.S. inflation evaluated on a sample from 1990:1 to 2020:2. EtLOP improves performance by approximately 10% to 30% in terms of the continuous ranked probability score across forecasting horizons.