Index Option Pricing Models with Stochastic Volatility and Stochastic Interest Rates

B-Tier
Journal: Review of Finance
Year: 1999
Volume: 3
Issue: 3
Pages: 273-310

Authors (2)

George J. Jiang (not in RePEc) Pieter J. van der Sluis

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper specifies a multivariate stochastic volatility (SV) model for the S&P500 index and spot interest rate processes. We first estimate the multivariate SV model via the efficient method of moments (EMM) technique based on observations of underlying state variables, and then investigate the respective effects of stochastic interest rates, stochastic volatility, and asymmetric S&P500 index returns on option prices. We compute option prices using both reprojected underlying historical volatilities and the implied risk premium of stochastic volatility to gauge each model's performance through direct comparison with observed market option prices on the index. Our major empirical findings are summarized as follows. First, while allowing for stochastic volatilitycan reduce the pricing errors and allowing for asymmetric volatility or "leverage effect" does help to explain the skewness of the volatility "smile", allowing for stochastic interest rates has minimal impact on option prices in our case. Second, similar to Melino and Turnbull (1990), our empirical findings strongly suggest the existence of a non-zero risk premium for stochastic volatility of asset returns. Based on the implied volatility risk premium, the SV models can largely reduce the option pricing errors, suggesting the importance of incorporating the information from the options market in pricing options. Finally, both the model diagnostics and option pricing errors in our study suggest that the Gaussian SV model is not sufficient in modeling short-term kurtosis of asset returns, an SV model with fatter-tailed noise or jump component may have better explanatory power. JEL classification: C10, G13.

Technical Details

RePEc Handle
repec:oup:revfin:v:3:y:1999:i:3:p:273-310.
Journal Field
Finance
Author Count
2
Added to Database
2026-01-29