Forecast density combinations of dynamic models and data driven portfolio strategies

A-Tier
Journal: Journal of Econometrics
Year: 2019
Volume: 210
Issue: 1
Pages: 170-186

Authors (5)

Baştürk, N. (not in RePEc) Borowska, A. (not in RePEc) Grassi, S. (not in RePEc) Hoogerheide, L. (not in RePEc) van Dijk, H.K.

Score contribution per author:

0.804 = (α=2.01 / 5 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

A dynamic asset-allocation model is specified in probabilistic terms as a combination of return distributions resulting from multiple pairs of dynamic models and portfolio strategies based on momentum patterns in US industry returns. The nonlinear state space representation of the model allows efficient and robust simulation-based Bayesian inference using a novel non-linear filter. Combination weights can be cross-correlated and correlated over time using feedback mechanisms. Diagnostic analysis gives insight into model and strategy misspecification. Empirical results show that a smaller flexible model-strategy combination performs better in terms of expected return and risk than a larger basic model-strategy combination. Dynamic patterns in combination weights and diagnostic learning provide useful signals for improved modeling and policy, in particular, from a risk-management perspective.

Technical Details

RePEc Handle
repec:eee:econom:v:210:y:2019:i:1:p:170-186
Journal Field
Econometrics
Author Count
5
Added to Database
2026-01-29