Robust Stochastic Discount Factors

A-Tier
Journal: The Review of Financial Studies
Year: 2008
Volume: 21
Issue: 3
Pages: 1077-1122

Authors (4)

Phelim Boyle (not in RePEc) Shui Feng (not in RePEc) Weidong Tian (not in RePEc) Tan Wang (Shanghai Jiao Tong University)

Score contribution per author:

1.005 = (α=2.01 / 4 authors) × 2.0x A-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

When the market is incomplete, a new non-redundant derivative security cannot be priced by no-arbitrage arguments alone. Moreover, there will be a multiplicity of stochastic discount factors and each of them may give a different price for the new derivative security. This paper develops an approach to the selection of a stochastic discount factor for pricing a new derivative security. The approach is based on the idea that the price of a derivative security should not vary too much when the payoff of the primitive security is slightly perturbed, i.e., the price of the derivative should be robust to model misspecification. The paper develops two metrics of robustness. The first is based on robustness in expectation. The second is based on robustness in probability and draws on tools from the theory of large deviations. We show that in a stochastic volatility model, the two metrics yield analytically tractable bounds for the derivative price, as the underlying stochastic volatility model is perturbed. The bounds can be readily used for numerical examination of the sensitivity of the price of the derivative to model misspecification. The Author 2007. Published by Oxford University Press on behalf of The Society for Financial Studies. All rights reserved. For Permissions, please email: [email protected], Oxford University Press.

Technical Details

RePEc Handle
repec:oup:rfinst:v:21:y:2008:i:3:p:1077-1122
Journal Field
Finance
Author Count
4
Added to Database
2026-01-29