Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems

B-Tier
Journal: Energy Policy
Year: 2017
Volume: 104
Issue: C
Pages: 274-284

Authors (3)

Zhen, Wei (not in RePEc) Qin, Quande (not in RePEc) Wei, Yi-Ming (Beijing Institute of Technolog...)

Score contribution per author:

0.670 = (α=2.01 / 3 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper aims to reveal the spatio-temporal patterns of energy consumption-related greenhouse gas (ECR-GHG) emissions in China's crop production systems (CPSs). The relevant crop production data from 31 provinces during 1997–2014 are utilized. In order to fully reflect the energy consumption and ECR-GHG emissions in CPSs, energy balance techniques are adopted from a consumption perspective. The driving factors behind ECR-GHG emissions are identified by means of a Logarithmic Mean Divisia Index analysis at both national and provincial levels. The results are as follows: (1) The yield of China's CPS is not positively correlated with energy consumption, and China's CPS has the relatively high potential to conserve energy and reduce ECR-GHG emissions; (2) Most of China's provinces have experienced enormous growth in ECR-GHG emissions; however there are relatively significant regional disparities; (3) ECR-GHG emissions from CPSs were mostly derived directly from the consumption of chemical fertilizers and diesel oil; (4) Areal productivity is the determining factor in the growth of ECR-GHG emissions, whereas the emission coefficient and energy mix are the main inhibiting factors; (5) Energy intensity has not achieved its full potential to decrease ECR-GHG emissions. This study provides insights into the potential for sustainable crop production in China.

Technical Details

RePEc Handle
repec:eee:enepol:v:104:y:2017:i:c:p:274-284
Journal Field
Energy
Author Count
3
Added to Database
2026-01-29