Forecasting using sparse cointegration

B-Tier
Journal: International Journal of Forecasting
Year: 2016
Volume: 32
Issue: 4
Pages: 1256-1267

Authors (2)

Wilms, Ines (Maastricht University) Croux, Christophe (not in RePEc)

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper proposes a sparse cointegration method. Cointegration analysis is used to estimate the long-run equilibrium relationships between several time series, with the coefficients of these long-run equilibrium relationships being the cointegrating vectors. We provide a sparse estimator of the cointegrating vectors, where sparse estimation means that some elements of the cointegrating vectors are estimated to be exactly zero. The sparse estimator is applicable in high-dimensional settings, where the time series is short compared to the number of time series. Our method achieves better estimation and forecast accuracy than the traditional Johansen method in sparse and/or high-dimensional settings. We use the sparse method for interest rate growth forecasting and consumption growth forecasting. The sparse cointegration method leads to important forecast accuracy gains relative to the Johansen method.

Technical Details

RePEc Handle
repec:eee:intfor:v:32:y:2016:i:4:p:1256-1267
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-29