Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
I propose a quasi-maximum likelihood framework for estimating nonlinear models with continuous or discrete endogenous explanatory variables. Joint and two-step estimation procedures are considered. The joint procedure is a quasi-limited information maximum likelihood procedure, as one or both of the log likelihoods may be misspecified. The two-step control function approach is computationally simple and leads to straightforward tests of endogeneity. In the case of discrete endogenous explanatory variables, I argue that the control function approach can be applied with generalized residuals to obtain average partial effects. I show how the results apply to nonlinear models for fractional and nonnegative responses.