A bivariate Markov regime switching GARCH approach to estimate time varying minimum variance hedge ratios

C-Tier
Journal: Applied Economics
Year: 2007
Volume: 39
Issue: 10
Pages: 1253-1265

Authors (2)

Score contribution per author:

0.503 = (α=2.01 / 2 authors) × 0.5x C-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This article develops a new bivariate Markov regime switching BEKK-Generalized Autoregressive Conditional Heteroscedasticity (GARCH) (RS-BEKK-GARCH) model. The model is a state-dependent bivariate BEKK-GARCH model and an extension of Gray's univariate generalized regime-switching (GRS) model to the bivariate case. To solve the path-dependency problem inherent in the bivariate regime switching BEKK-GARCH model, we propose a recombining method for the covariance term in the conditional variance-covariance matrix. The model is applied to estimate time-varying minimum variance hedge ratios for corn and nickel spot and futures prices. Out-of-sample point estimates of hedging portfolio variance show that compared to the state-independent BEKK-GARCH model, the RS-BEKK-GARCH model improves out-of-sample hedging effectiveness for both corn and nickel data. We perform White's (2000) data-snooping reality check to test for predictive superiority of RS-BEKK-GARCH over the benchmark model and find that the difference in variance reduction between BEKK-GARCH and RS-BEKK-GARCH is not statistically significant for either data set at conventional confidence levels.

Technical Details

RePEc Handle
repec:taf:applec:v:39:y:2007:i:10:p:1253-1265
Journal Field
General
Author Count
2
Added to Database
2026-01-29