Trends in Extreme Value Indices

B-Tier
Journal: Journal of the American Statistical Association
Year: 2021
Volume: 116
Issue: 535
Pages: 1265-1279

Authors (2)

Laurens de Haan (not in RePEc) Chen Zhou (Erasmus Universiteit Rotterdam)

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

We consider extreme value analysis for independent but nonidentically distributed observations. In particular, the observations do not share the same extreme value index. Assuming continuously changing extreme value indices, we provide a nonparametric estimate for the functional extreme value index. Besides estimating the extreme value index locally, we also provide a global estimator for the trend and its joint asymptotic theory. The asymptotic theory for the global estimator can be used for testing a prespecified parametric trend in the extreme value indices. In particular, it can be applied to test whether the extreme value index remains at a constant level across all observations.

Technical Details

RePEc Handle
repec:taf:jnlasa:v:116:y:2021:i:535:p:1265-1279
Journal Field
Econometrics
Author Count
2
Added to Database
2026-01-29