Judgment aggregators and Boolean algebra homomorphisms

B-Tier
Journal: Journal of Mathematical Economics
Year: 2010
Volume: 46
Issue: 1
Pages: 132-140

Score contribution per author:

2.011 = (α=2.01 / 1 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

The theory of Boolean algebras can be fruitfully applied to judgment aggregation: assuming universality, systematicity and a sufficiently rich agenda, there is a correspondence between (i) non-trivial deductively closed judgment aggregators and (ii) Boolean algebra homomorphisms defined on the power-set algebra of the electorate. Furthermore, there is a correspondence between (i) consistent complete judgment aggregators and (ii) 2-valued Boolean algebra homomorphisms defined on the power-set algebra of the electorate. Since the shell of such a homomorphism equals the set of winning coalitions and since (ultra)filters are shells of (2-valued) Boolean algebra homomorphisms, we suggest an explanation for the effectiveness of the (ultra)filter method in social choice theory. From the (ultra)filter property of the set of winning coalitions, one obtains two general impossibility theorems for judgment aggregation on finite electorates, even without assuming the Pareto principle.

Technical Details

RePEc Handle
repec:eee:mateco:v:46:y:2010:i:1:p:132-140
Journal Field
Theory
Author Count
1
Added to Database
2026-02-02