Deciding between alternative approaches in macroeconomics

B-Tier
Journal: International Journal of Forecasting
Year: 2018
Volume: 34
Issue: 1
Pages: 119-135

Score contribution per author:

2.011 = (α=2.01 / 1 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

Macroeconomic time-series data are aggregated, inaccurate, non-stationary, collinear and rarely match theoretical concepts. Macroeconomic theories are incomplete, incorrect and changeable: location shifts invalidate the law of iterated expectations and ‘rational expectations’ are then systematically biased. Empirical macro-econometric models are non-constant and mis-specified in numerous ways, so economic policy often has unexpected effects, and macroeconomic forecasts go awry. In place of using just one of the four main methods of deciding between alternative models, theory, empirical evidence, policy relevance and forecasting, we propose nesting ‘theory-driven’ and ‘data-driven’ approaches, where theory-models’ parameter estimates are unaffected by selection despite searching over rival candidate variables, longer lags, functional forms, and breaks. Thus, theory is retained, but not imposed, so can be simultaneously evaluated against a wide range of alternatives, and a better model discovered when the theory is incomplete.

Technical Details

RePEc Handle
repec:eee:intfor:v:34:y:2018:i:1:p:119-135
Journal Field
Econometrics
Author Count
1
Added to Database
2026-02-02