Reinforcement Learning Equilibrium in Limit Order Markets

B-Tier
Journal: Journal of Economic Dynamics and Control
Year: 2022
Volume: 144
Issue: C

Authors (2)

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper introduces an information-based reinforcement learning to exploit information channels to traders’ trading behavior in an equilibrium limit order market. Anticipating that informed traders are more likely to submit market buy (sell) orders when asset is significantly under (over) valued, uninformed traders tend to chase market buy (sell) orders of the informed to buy (sell). To gain from the order chasing of the uninformed, informed traders strategically submit more market buy (sell) and limit sell (buy) orders. This amplifies the order chasing behaviour of the uninformed, generating predictable trading behaviours that can improve information efficiency but reduce market liquidity. Order book information and learning can have opposite effects on order choices and endogenous liquidity provision for the informed and uninformed. Furthermore, more informed trading is beneficial, but fast trading can be harmful for market quality.

Technical Details

RePEc Handle
repec:eee:dyncon:v:144:y:2022:i:c:s0165188922002019
Journal Field
Macro
Author Count
2
Added to Database
2026-02-02