Biased social learning

B-Tier
Journal: Games and Economic Behavior
Year: 2013
Volume: 80
Issue: C
Pages: 131-146

Authors (2)

Score contribution per author:

1.005 = (α=2.01 / 2 authors) × 1.0x B-tier

α: calibrated so average coauthorship-adjusted count equals average raw count

Abstract

This paper examines social learning when only one of the two types of decisions is observable. Because agents arrive randomly over time, and only those who invest are observed, later agents face a more complicated inference problem than in the standard model, as the absence of investment might reflect either a choice not to invest, or a lack of arrivals. We show that, as in the standard model, learning is complete if and only if signals are unbounded. If signals are bounded, cascades may occur, and whether they are more or less likely than in the standard model depends on a property of the signal distribution. If the hazard ratio of the distributions increases in the signal, it is more likely that no one invests in the standard model than in this one, and welfare is higher. Conclusions are reversed if the hazard ratio is decreasing.

Technical Details

RePEc Handle
repec:eee:gamebe:v:80:y:2013:i:c:p:131-146
Journal Field
Theory
Author Count
2
Added to Database
2026-02-02