Score contribution per author:
α: calibrated so average coauthorship-adjusted count equals average raw count
In this study, we develop nonparametric analysis of deviance tools for generalized partially linear models based on local polynomial fitting. Assuming a canonical link, we propose expressions for both local and global analysis of deviance, which admit an additivity property that reduces to analysis of variance decompositions in the Gaussian case. Chi-square tests based on integrated likelihood functions are proposed to formally test whether the nonparametric term is significant. Simulation results are shown to illustrate the proposed chi-square tests and to compare them with an existing procedure based on penalized splines. The methodology is applied to German Bundesbank Federal Reserve data.